Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.

Identifieur interne : 000659 ( Main/Exploration ); précédent : 000658; suivant : 000660

Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.

Auteurs : Corinne Cassier-Chauvat [France] ; Franck Chauvat [France]

Source :

RBID : pubmed:25387163

Abstract

Ferredoxins (Fed), occurring in most organisms, are small proteins that use their iron-sulfur cluster to distribute electrons to various metabolic pathways, likely including hydrogen production. Here, we summarize the current knowledge on ferredoxins in cyanobacteria, the prokaryotes regarded as important producers of the oxygenic atmosphere and biomass for the food chain, as well as promising cell factories for biofuel production. Most studies of ferredoxins were performed in the model strain, Synechocystis PCC6803, which possesses nine highly-conserved ferredoxins encoded by monocistronic or operonic genes, some of which are localized in conserved genome regions. Fed1, encoded by a light-inducible gene, is a highly abundant protein essential to photosynthesis. Fed2-Fed9, encoded by genes differently regulated by trophic conditions, are low-abundant proteins that play prominent roles in the tolerance to environmental stresses. Concerning the selectivity/redundancy of ferredoxin, we report that Fed1, Fed7 and Fed9 belong to ferredoxin-glutaredoxin-thioredoxin crosstalk pathways operating in the protection against oxidative and metal stresses. Furthermore, Fed7 specifically interacts with a DnaJ-like protein, an interaction that has been conserved in photosynthetic eukaryotes in the form of a composite protein comprising DnaJ- and Fed7-like domains. Fed9 specifically interacts with the Flv3 flavodiiron protein acting in the photoreduction of O2 to H2O.

DOI: 10.3390/life4040666
PubMed: 25387163
PubMed Central: PMC4284462


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.</title>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25387163</idno>
<idno type="pmid">25387163</idno>
<idno type="doi">10.3390/life4040666</idno>
<idno type="pmc">PMC4284462</idno>
<idno type="wicri:Area/Main/Corpus">000581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000581</idno>
<idno type="wicri:Area/Main/Curation">000581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000581</idno>
<idno type="wicri:Area/Main/Exploration">000581</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.</title>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Life (Basel, Switzerland)</title>
<idno type="ISSN">2075-1729</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferredoxins (Fed), occurring in most organisms, are small proteins that use their iron-sulfur cluster to distribute electrons to various metabolic pathways, likely including hydrogen production. Here, we summarize the current knowledge on ferredoxins in cyanobacteria, the prokaryotes regarded as important producers of the oxygenic atmosphere and biomass for the food chain, as well as promising cell factories for biofuel production. Most studies of ferredoxins were performed in the model strain, Synechocystis PCC6803, which possesses nine highly-conserved ferredoxins encoded by monocistronic or operonic genes, some of which are localized in conserved genome regions. Fed1, encoded by a light-inducible gene, is a highly abundant protein essential to photosynthesis. Fed2-Fed9, encoded by genes differently regulated by trophic conditions, are low-abundant proteins that play prominent roles in the tolerance to environmental stresses. Concerning the selectivity/redundancy of ferredoxin, we report that Fed1, Fed7 and Fed9 belong to ferredoxin-glutaredoxin-thioredoxin crosstalk pathways operating in the protection against oxidative and metal stresses. Furthermore, Fed7 specifically interacts with a DnaJ-like protein, an interaction that has been conserved in photosynthetic eukaryotes in the form of a composite protein comprising DnaJ- and Fed7-like domains. Fed9 specifically interacts with the Flv3 flavodiiron protein acting in the photoreduction of O2 to H2O. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25387163</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2075-1729</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Life (Basel, Switzerland)</Title>
<ISOAbbreviation>Life (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.</ArticleTitle>
<Pagination>
<MedlinePgn>666-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/life4040666</ELocationID>
<Abstract>
<AbstractText>Ferredoxins (Fed), occurring in most organisms, are small proteins that use their iron-sulfur cluster to distribute electrons to various metabolic pathways, likely including hydrogen production. Here, we summarize the current knowledge on ferredoxins in cyanobacteria, the prokaryotes regarded as important producers of the oxygenic atmosphere and biomass for the food chain, as well as promising cell factories for biofuel production. Most studies of ferredoxins were performed in the model strain, Synechocystis PCC6803, which possesses nine highly-conserved ferredoxins encoded by monocistronic or operonic genes, some of which are localized in conserved genome regions. Fed1, encoded by a light-inducible gene, is a highly abundant protein essential to photosynthesis. Fed2-Fed9, encoded by genes differently regulated by trophic conditions, are low-abundant proteins that play prominent roles in the tolerance to environmental stresses. Concerning the selectivity/redundancy of ferredoxin, we report that Fed1, Fed7 and Fed9 belong to ferredoxin-glutaredoxin-thioredoxin crosstalk pathways operating in the protection against oxidative and metal stresses. Furthermore, Fed7 specifically interacts with a DnaJ-like protein, an interaction that has been conserved in photosynthetic eukaryotes in the form of a composite protein comprising DnaJ- and Fed7-like domains. Fed9 specifically interacts with the Flv3 flavodiiron protein acting in the photoreduction of O2 to H2O. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cassier-Chauvat</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chauvat</LastName>
<ForeName>Franck</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Life (Basel)</MedlineTA>
<NlmUniqueID>101580444</NlmUniqueID>
<ISSNLinking>2075-1729</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25387163</ArticleId>
<ArticleId IdType="pii">life4040666</ArticleId>
<ArticleId IdType="doi">10.3390/life4040666</ArticleId>
<ArticleId IdType="pmc">PMC4284462</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 1;26(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1988 Oct;18(1-2):179-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jan 28;287(5453):655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Oct;74(2):409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Jan;39(2):455-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Nov;23(4):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Nov 26;12:226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(2):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Sep;195(18):4138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1998;70(2):95-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9785959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010 Aug 02;4:105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20678200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):1019-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Oct 02;8:350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17910763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1994 Mar;28(3):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 May;28(4):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9643548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 24;289(4):1930-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 8;286(27):24007-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jun;171(6):3449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2498291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1837(8):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Jul;93(2):234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24865810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2011 May;157(Pt 5):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Jul 6;1101(1):48-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
</region>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000659 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000659 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25387163
   |texte=   Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25387163" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020